Probing molecular dynamics at attosecond resolution with femtosecond laser pulses.
نویسندگان
چکیده
The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15 fs).
منابع مشابه
Attosecond Physics – From Generation of as Pulses to Applications on Solids
The generation of ever shorter pulses is a key to exploring the dynamic behavior of matter on ever shorter time scales. Attosecond XUV pulses together with the few-cycle (few-femtosecond) laser pulses used for their generation have opened the way to the development of a technique for attosecond sampling of electrons ejected from atoms or molecules or solids [1]. This is accomplished by probing ...
متن کاملCoherent control of electron wave packets in dissociating H + 2
Coherent control of electron localization in the dissociation of a hydrogen molecular ion exposed to an attosecond pulse train and a time-delayed near-infrared laser pulse are studied by solving numerically the time-dependent Schrödinger equation. The attosecond pulses in the train generate a train of electron wave packets in the dissociating molecular ion, which are steered by the near-infrare...
متن کاملGeneration and Characterization of Sub-70 Isolated Attosecond Pulses
Dynamics occurring on microscopic scales, such as electronic motion inside atoms and molecules, are governed by quantum mechanics. However, the Schrödinger equation is usually too complicated to solve analytically for systems other than the hydrogen atom. Even for some simple atoms such as helium, it still takes months to do a full numerical analysis. Therefore, practical problems are often sol...
متن کاملnphys620 Krausz Progress.indd
From 1964, when mode-locking was discovered, until 2001, when the fi rst sub-femtosecond (that is, attosecond) pulses were produced1,2, laser pulse durations decreased by about three orders of magnitude (Fig. 1). Advances came through constantly refi ning known concepts of dispersion control and Kerr nonlinearities, aided by improved laser materials. Although a laser scientist from 1965 would h...
متن کاملGeneration of Attosecond Light Pulses from Gas and Solid State Media
Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs) pulses are successfully used to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 91 23 شماره
صفحات -
تاریخ انتشار 2003